266 research outputs found

    Cobalt complexes with tripodal ligands: implications for the design of drug chaperones

    Get PDF
    Extensive research is currently being conducted into metal complexes that can selectively deliver cytotoxins to hypoxic regions in tumours. The development of pharmacologically suitable agents requires an understanding of appropriate ligand–metal systems for chaperoning cytotoxins. In this study, cobalt complexes with tripodal tren (tris-(2-aminoethyl)amine) and tpa (tris-(2 pyridylmethyl)amine) ligands were prepared with ancillary hydroxamic acid, β-diketone and catechol ligands and several parameters, including: pKa, reduction potential and cytotoxicity were investigated. Fluorescence studies demonstrated that only tpa complexes with β-diketones showed any reduction by ascorbate in situ and similarly, cellular cytotoxicity results demonstrated that ligation to cobalt masked the cytotoxicity of the ancillary groups in all complexes except the tpa diketone derivative [Co(naac)tpa](ClO4)2 (naac = 1-methyl-3-(2-naphthyl)- propane-1,3-dione). Additionally, it was shown that the hydroxamic acid complexes could be isolated in both the hydroxamate and hydroximate form and the pKa values (5.3–8.5) reveal that the reversible protonation/deprotonation of the complexes occurs at physiologically relevant pHs. These results have clear implications for the future design of prodrugs using cobalt moieties as chaperones, providing a basis for the design of cobalt complexes that are both more readily reduced and more readily taken up by cells in hypoxic and acidic environments

    Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Two major issues which hamper the use of the anticancer drug cisplatin are the development of cancer cell resistance and its nephrotoxicity. One possible mechanism by which resistance is reported to develop is a reduction in drug uptake across the cell membrane. While the passive uptake of cisplatin has long been cited as an important contribution, far greater attention has been given to active modes of uptake, particularly in recent research. Using unilamellar lipid vesicles together with the stopped-flow kinetic method we show here that the permeability coefficient of cisplatin increases significantly with the chloride concentration of the medium. This supports the hypothesis that cisplatin can enter cells via passive permeation through the lipid phase of the membrane, but becomes trapped within the cytoplasm because dissociation of chloride ligands yields a membrane-impermeant positively-charged aqua derivative. This is important evidence for a major role of passive membrane diffusion in the uptake of cisplatin, and suggests that reduced cell uptake is unlikely to be a significant mechanism leading to the development of drug resistance. Studies of rubidium ion uptake into the cytoplasm of Xenopus oocytes via the Na+,K+-ATPase show significant inhibition of this ion pump when cisplatin is present in the cytoplasm. Because Na+,K+-ATPase activity is essential to the survival of all animal cells, e.g. via maintenance of cell volume, and the Na+,K+-ATPase is expressed at particularly high levels within the membranes of kidney tubules where it plays a crucial role in nutrient reabsorption, these results suggest that cisplatin-induced inhibition of the Na+,K+-ATPase is a likely contributing cause for the nephrotoxicity of cisplatin.DFG, EXC 314, Unifying Concepts in Catalysi

    LFRic: meeting the challenges of scalability and performance portability in weather and climate models

    Get PDF
    This paper describes LFRic: the new weather and climate modelling system being developed by the UK Met Office to replace the existing Unified Model in preparation for exascale computing in the 2020s. LFRic uses the GungHo dynamical core and runs on a semi-structured cubed-sphere mesh. The design of the supporting infrastructure follows object-oriented principles to facilitate modularity and the use of external libraries where possible. In particular, a `separation of concerns' between the science code and parallel code is imposed to promote performance portability. An application called PSyclone, developed at the STFC Hartree centre, can generate the parallel code enabling deployment of a single source science code onto different machine architectures. This paper provides an overview of the scientific requirement, the design of the software infrastructure, and examples of PSyclone usage. Preliminary performance results show strong scaling and an indication that hybrid MPI/OpenMP performs better than pure MPI

    Net ecosystem exchange from two formerly afforested peatlands undergoing restoration in the Flow Country of northern Scotland

    Get PDF
    Northern peatlands are important in the global carbon (C) cycle as they help regulate local, regional and global C budgets through high atmospheric carbon dioxide (CO2) uptake and low net CO2 losses to the atmosphere. Since the 1900s (but particularly the 1950s) land-use change has affected many peatland areas, driven in part by attempts to improve their commercial value. During this period, many peatlands in the UK were drained and planted with non-native conifer plantations. Efforts are now underway to restore the ecosystem functioning of these peatlands to those characteristic of pristine peatlands, in particular C flux dynamics. A lack of ecosystem level measurements means that the timescales of restoration and the degree to which they are successful remains poorly determined. In this research, we present the first year-round study of net ecosystem CO2 exchange (NEE) from peatlands undergoing restoration from forestry. Annual NEE was measured from two sites between March 2014 and June 2015, where restoration commenced 10 years and 16 years prior to the start of this study, and the results were then compared to existing measurements from a near-pristine peatland. Existing NEE data (expressed as CO2-C) from the near-pristine peatland indicated a C sink of 114 g m-2 yr-1, and our estimates suggest that the older restored site (16 years) was also a NEE sink (71 g m-2 yr-1). In contrast, the younger site (10 years) was a NEE source (80 g m-2 yr-1). We critically assess the confidence of these measurements and also present these data in relation to other northern hemisphere peatlands to better understand the timeframe in which a peatland site can turn from a C source to a C sink after restoration

    Steric Determinants of Pt/DNA Interactions and Anticancer Activity

    Get PDF
    Studies directed at establishing the structural features that control Pt/DNA interactions and the anticancer activity of Pt drugs are described. [1H, 15N]-HSQC 2D NMR spectroscopic studies of the reactions of cisplatin with oligonucleotides containing ApG and GpA binding sites reveal dramatic differences in the rates of formation of monofunctional adducts at the two sites. When the reactant is cis-[Pt(NH3)2(OH2)2]2+ no such differences are observed suggesting that outer-sphere interactions between the reactant and the oligonucleotide may play a substantial role in determining the rates. Rates of closure to the bifunctional adducts are similar to those observed for cisplatin. Studies of the adduct profiles formed by sterically bulky and/or optically active complexes reveal that steric interactions play a major role in mediating the binding of Pt(ll) to DNA but that hydrogen bonds play less of a role. In vitro cytotoxic activities for these complexes do not always follow the trends that would be expected on the basis of the adduct profiles

    Rational ligand design for metal ion recognition. Synthesis of a N-benzylated N2S3-donor macrocycle for enhanced silver(I) discrimination

    Get PDF
    Four previously documented ligand design strategies for achieving Ag(I) discrimination have been applied to the design of a new N-benzylated N2S3-donor macrocycle; the latter shows high selectivity for Ag(I) over Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) in log K and bulk membrane transport studies
    • …
    corecore